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In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical
Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This
framework is optimized for brain data and itsmain goal is to achieve an accurate alignment of all brain structures,
includingwhitematter (WM), graymatter (GM), and spaces containing cerebrospinalfluid (CSF). Currentlymost
DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some
diffusion-derivedmetrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative
for proper alignment ofWM, other tensormetrics such as the trace ormean diffusivity (MD) are fundamental for
a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural
MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion
data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its
cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric
time-varying velocity-based transformation model, which enables it to account for potentially large anatomical
variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets
and compared with other widely-used diffeomorphic image registration techniques employing both full tensor
information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall
performance in the entire brain, while being equivalent to the best existing methods in WM.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

In the past couple of decades, Diffusion Tensor Imaging (DTI) (Basser
et al., 1994; Pierpaoli et al., 1996) has been extensively used to investi-
gate the human brain. DTI provides unique microstructural and physio-
logical insights into brain tissue that are informative of processes
involved in development, aging, and various diseases. With recent ad-
vances in magnet and gradient systems and with the developments of
effective echo-planar imaging distortion correction algorithms
(Irfanoglu et al., 2015; Andersson et al., 2003), it is now possible to
achieve a high degree of anatomical accuracy in DTI data sets. Cross-
sectional and longitudinal group analysis of such diffusion MRI (dMRI)
data has been gaining popularity, and voxelwise analyses have been
performed on numerous developmental and clinical studies (Sadeghi
Imaging and Tissue Sciences,
pment, National Institutes of

oglu).
et al., 2015; Maier-Hein et al., 2015; Poudel et al., 2015; Mahoney
et al., 2015; Garaci et al., 2015). Accurate spatial normalization is impor-
tant for a meaningful voxelwise analysis of low resolution imaging data
(Bookstein, 2001), but it becomes crucial for the higher-resolution data
with fine anatomical details that current DTI scans can provide.
Intersubject spatial normalization is also the first step in the creation
of population atlases that can be used in normative databases.

There has been an extensive amount of work on spatially normaliz-
ing diffusion tensor images (Gee and Alexander, 2006; Muñoz-Moreno
et al., 2009;Wang et al., 2011). Diffusion tensor registration techniques
can be broadly categorized into two groups: scalar map-based or full
tensor-based.

Fractional anisotropy (FA) is the metric used by virtually all previ-
ously proposed scalar map-based approaches (Jones et al., 2002;
Guimond et al., 2002; Park et al., 2003; Rohde et al., 2004b; Andersson
et al., 2007). Scalar-based registration approaches, which are still the
most widely used for clinical research applications, perform very well
when the goal is to analyze the quantity being used for registration
but can be suboptimal to match other DTI metrics such as principal ori-
entations. Several authors have attempted to improve scalarmap-based
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methods by combining several tensor-derived quantities and perform
multichannel registration. Yang et al. (2008) proposed amethod that in-
tegrated geometric features such as prolateness, oblateness, and sphe-
ricity of the diffusion tensors and orientation information to perform
registration.Wang et al. (2013) used image polynomial expansion strat-
egies on FA and scalar index images to optimize tensor alignment
considering shape information. Goh and Vidal (2006) showed an alge-
braic solution to rigid DTI registration and presented a pointwise
feature-based registration algorithm to complement tensor field
matching. In their intrarelated works, Wang et al. (2014) and Yap
et al. (2009a, 2009b, 2010) employed hierarchical guidance of regional
distributions, boundaries, and orientational information derived from
diffusion tensors to perform registration.

Full tensor-based approaches appear most promising because they
use the entire information available in the data set. These techniques
can also be categorized into three classes: algorithms that do not
reorient the tensors (e.g. Alexander and Gee, 2000; Ruiz-Alzola et al.,
2002; Rohde et al., 2004b), algorithms that disregard the orientation in-
formation during optimization but reorient the tensors afterwards
(e.g., Irfanoglu et al., 2008, 2009), and algorithms that also consider ten-
sor reorientation information during optimization. Park et al. (2003)
showed that reorienting the tensor field based on the deformation
field during optimization or afterwards outperforms “no reorientation”
strategy even when tensor reorientation is not explicitly optimized.
Curran and Alexander (2003) then showed that considering tensor re-
orientation during optimization further improved alignment quality
using affine transformations. Adluru et al. (2013) showed that tensor re-
orientation strategies keep anatomically consistent architectures after
registration. Zhang et al. (2006) were the first to include tensor orienta-
tion information in a diffeomorphic registration framework by model-
ing the deformation fields with locally affine patches with an explicit
rotation component. This method, which was released in the widely
used DTITK package, guaranteed diffeomorphism by constraining the
neighboring affine patches to be similar, in addition to a subsequent fil-
tering with Gaussian kernels. DTITK's transformation model with
multiaffine patches made tensor reorientation straightforward, but
this strategywas not applicable tomore general transformationmodels,
such as displacement fields, until Yeo et al. (2008, 2009) proposed an
analytical solution to the differentials of the finite-strain tensor reorien-
tation strategy. This method, which is now part of the MEDINRIA pack-
age, employed a diffeomorphic Demons-based transformation model
using exact finite-strain gradients, which resulted in a very large, sparse
linear system that needed to be solved at every optimization iteration. A
stationary-velocity parameterization for thismethodwas also proposed
(Sweet and Pennec, 2010; Commowick et al., 2012). Using the same dif-
ferential formulation, Li et al. (2014) proposed another registration
strategy that employed local-trust-region techniques that improved
the former method's registration quality in addition to significantly
speeding up the processing. Ceritoglu et al. (2009) proposed an exten-
sion to the popular large deformation diffeomorphic metric mapping
method to support diffusion tensor data, where tensor reorientation
was performed by reorienting the eigenvectors of the tensors in their
formulation.

DTI-based registration algorithms have traditionally aimed at
achieving good alignment of white matter (WM) structures, mostly fo-
cusing ondiffusion anisotropy and, in some cases, the principal diffusion
orientations (Zhang et al., 2006; Jones et al., 2002; Park et al., 2003;
Andersson et al., 2007). However,many clinical applications need excel-
lent spatial normalization across all brain structures, WM, as well as
gray matter (GM) and cerebrospinal fluid (CSF) filled cavities, such as
in stroke, traumatic brain injury (TBI), or in neurodevelopmental and
neurodegenerative disorders. Even whole tensor–based approaches
currently do not rely on a cost function that would be “locally” optimal.
This can cause local misalignment or even global brain morphometry
mismatches. Therefore, our primary goal was to develop a DTI registra-
tionmethodology with locally varyingmetrics to provideWMpathway
alignment capabilities on parwithmethods that rely on specializedWM
metrics but also provide accurate registration of GM regions and CSF
spaces. In the following sections, wewill first describe themathematical
framework of the proposed method, DR-TAMAS (Diffeomorphic
Registration for Tensor Accurate alignMent of Anatomical Structures),
which is part of the publicly available TORTOISE diffusion MRI process-
ing package (Pierpaoli et al., 2010). We will then analyze DR-TAMAS'
performance.

Materials and methods

The distinct properties of the DR-TAMAS registration framework are
as follows:

• Spatially varying multimetrics: DR-TAMAS employs a weighted combi-
nation of metrics that favors the tensor deviatoric similarity (Basser
and Pierpaoli, 1996) in WM regions, but adds tensor trace (TR) dis-
tance and other cross-correlation metrics to quantify the similarities
between GM and CSF regions. A smooth spatially varying weighting
kernel, which is a function of voxelwise FA values, combines the de-
formations from these metrics. Fusing different channels of informa-
tion in this manner guarantees an anatomically faithful alignment of
GM and CSF regions in addition to WM fiber-bundle alignment.

• Transformation model: DR-TAMAS gives users the possibility for two
diffeomorphic transformation models: Symmetric Normalization
(SyN) (Avants et al., 2008) used in the ANTS package (Avants et al.,
2011) and time-varying velocity-based model (Christensen et al.,
1996), both now available in the ITK library. With these transforma-
tions, DR-TAMAS is capable of modeling the large deformations neces-
sary to register brains with significant morphological abnormalities.

• Analytical finite strain differentials for tensor reorientation without a
linear system: We employ the analytical finite strain differentials pro-
posed by Yeo et al. (2008, 2009). However, instead of solving a large,
sparse linear system at every optimization iteration, we employ a
conjugate-gradient based optimization scheme that considers the ef-
fects of changes in the displacementfields on the rotation of neighbor-
ing voxels. This formulation significantly speeds up processing and
makes it suitable for parallelism.

• Combination of other imaging modalities with DTI: DR-TAMAS provides
the functionality to use other imaging modalities such as T1-weighted
or T2-weighted images to further improve the alignment of fine-scale
GM regions such as gyri and sulci. The local cross-correlation metric is
used to assess the similarity of these additional modalities, and dis-
placement fields are again combined at the metric level with larger
voxelwiseweights for tensor-based deformation fields forWMregions.

• Robust DTI and structural atlas creation: DR-TAMAS gives the functional-
ity to create bothDTI and/or anatomical image-based atlases based on a
variation of the atlas creation methods proposed by Joshi et al. (2004)
and Wu et al. (2011).

In this section,wewill describe themathematical foundations ofDR-
TAMAS, its atlas creation methodologies, and our validation strategies
with several data sets.

Transformation model

Every image registration problem consists of a similarity metric and
a transformation model. For DR-TAMAS, we opted to provide users the
ability to use the time-varying velocity field (TVVF) based transforma-
tion and SyN, which we will describe here. SyN (Avants et al., 2008)
has been shown several times to be a very powerful and fast transfor-
mation model (Klein et al., 2009; Murphy et al., 2011). SyN models the
abstract time space of TVVF with just three time points, i.e., the fixed
image F at t=0, the moving image M at t=1, and a middle image at
t=0.5, where the similarity metric is evaluated. The forward displace-
ment field ϕ1(x, t) maps F onto the middle time point as F ' =
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F(ϕ1(x,0.5)), whereas a second displacement field, ϕ2(x, t), maps the
moving image M as M ' =M(ϕ2(x,0.5)). Therefore, when a similarity
metric S is used, the registration optimization function can be written
as follows:

ξ ¼
Z
x∈Ω

S F 0;M0;x
� �

dx ð1Þ

where Ω represents the image domain. Therefore, the backward map-
ping from the moving image to the fixed image can be described as:
ϕ(x)=ϕ1(x,0.5)∘ϕ2

-1(x,0.5), where ∘ represents the deformation com-
bination operator. Optimization of Eq. (1) can be performed by using
Euler–Lagrange equations, yielding the generic gradient directions:

∂ξ
∂ϕ1

¼ ∂ξ
∂S

∂S
∂F 0

∂F 0

∂x
∂x
∂ϕ1

ð2Þ

∂ξ
∂ϕ2

¼ ∂ξ
∂S

∂S
∂M0

∂M0

∂x
∂x
∂ϕ2

ð3Þ

In these gradient formulations, the second terms∂S=∂F 0 and∂S=∂M0

depend solely on the employed similarity metric and the last terms
∂x/∂ϕ1 and ∂x/∂ϕ2 are the transformation Jacobians. In traditional
image registration, the terms ∂F ' /∂x and ∂M ' /∂x represent spatial
image gradients, but in the case of tensor image registration, these are
the terms that might depend on tensor reorientation. The reader is re-
ferred to (Avants et al., 2008) for a detailed description of the transfor-
mation model and metric gradients for the cross-correlation metric.

The TVVF model we use is a variant of the one provided in the ITK
library. The user is still provided the ability to select the number of ab-
stract time points but for each timepoint t, the registration function gra-
dients are computed using the spatial gradients of both the fixed and
moving images for the reasons described in the section Atlas creation.
This formulation can be found in Appendix A.1.

Mathematical framework for the similarity metrics

DR-TAMAS employs a combination of three types of similarity met-
rics: the deviatoric tensor similarity metric, tensor trace mean squares
similarity, and a cross-correlation metric on all other additional images
to be used in registration.

Trace similarity
The trace similaritymetric is mathematically the simplest of the two

metrics that employ tensor information. Even though individual com-
ponents of the tensors change after tensor reorientation, the trace
value is constant. Therefore, while this metric is used, for processing
speed purposes, the tensors are not reoriented, yielding transformed
tensors similar to the scalar image case as: F ' =F(ϕ1(x,0.5)) and simi-
larly for M'. Therefore the registration optimization functions becomes
as follows:

ξ1 ¼
X
x∈Ω

Tr F 0 xð Þ� �
−Tr M0 xð Þ� �� �2 ð4Þ

¼
X
x∈Ω

F 011 þ F 022 þ F 033
� �

− M0
11 þM0

22 þM0
33

� �� �2 ð5Þ

where F′ii is the ith diagonal tensor component of the fixed tensor image
at spatial location x and Tr is the trace operator. The displacement
vectors can then be written as follows:

∂ξ1
∂ϕ1

xð Þ ¼ 2 Tr F 0 xð Þ� �
−Tr M0 xð Þ� �� � ∂Tr F 0 xð Þ� �

∂x
∂x
∂ϕ1

ð6Þ
∂ξ1
∂ϕ2

xð Þ ¼ 2 Tr M0 xð Þ� �
−Tr F 0 xð Þ� �� � ∂Tr M0 xð Þ� �

∂x
∂x
∂ϕ2

ð7Þ

The spatial gradients of the trace are computed by summing the spa-
tial gradients of the individual diagonal components of the tensor.

Deviatoric tensor similarity
This metric, which is the default metric in DTITK, has been shown

to yield very good alignment in terms of both WM structure and
orientation information (Zhang et al., 2006; Wang et al., 2011). The
deviatoric tensor of a tensorD is the anisotropic part of D and is defined
as D

� ¼ D� 1
3 TrðDÞI with I being the identity matrix (Basser and

Pierpaoli, 1996). In compact form, this yields the registration optimiza-
tion function:

ξ2 ¼
X
x∈Ω

~F 0 xð Þ− ~M0 xð Þk2
��� ð8Þ

In thismetric's case, however, the transformed and interpolated ten-
sor F ′(x) is different from the trace metric as the interpolated tensors
also need to be reoriented based on their corresponding deformation
fields as follows:

F 0 xð Þ ¼ R F xð ÞF ϕ1 xð Þð ÞRT
F xð Þ ð9Þ

M0 xð Þ ¼ RM xð ÞM ϕ2 xð Þð ÞRT
M xð Þ ð10Þ

The rotation matrix RF ,M is a function of the underlying displace-
ment field ϕ1,2 at voxel locations xN , which are in the neighborhood
N of x as R F;MðxÞ ¼ Rðϕ1;2ðxNÞÞ . The finite strain (Alexander et al.,
2001) definition of the rotation matrix is as follows: Let JF ,M(x) be the
3×3 spatial Jacobianmatrix of the displacement fieldϕ1,2. The differen-
tials are computedwith the Jacobian operator J ðϕ1;2ðxNÞÞ, which in our
case is based on the 4th-order centered differences. The local affine ma-
trix A(x) is then defined as A(x)= I+ J(x) (Appendix A.2). When the
subscripts are omitted, the rotation matrices can be written as:

R¼ AAT
� �−1=2

A ð11Þ

The formulation for the displacementfield vectors can again be com-
puted using Euler–Lagrange equations and chain-rule:

∂F 0

∂ϕ1
xð Þ ¼ R xð Þ ∂F ϕ1 xð Þð Þ

∂ϕ1 xð Þ RT xð Þ þ ∂R xð Þ
∂ϕ1 xð Þ F ϕ1 xð Þð ÞRT xð Þ

þ R xð ÞF ϕ1 xð Þð Þ þ ∂RT xð Þ
∂ϕ1 xð Þ

ð12Þ

With this formulation, the terms in the second line of Eq. (12) are
zero because a change in the displacement vector at voxel x does not af-
fect the rotation matrix R at that voxel. However, a change in the dis-
placement vector of a neighboring voxel affects the rotation matrix of
the current voxel x. Therefore, the displacement vector update at
voxel x results from the cumulative contribution of the “matching
term” and “tensor rotation term” that originates from the effect of the
change in the current displacement vector to the rotation matrix of a
neighboring voxel v ∈ xN as follows:

∂F 0

∂ϕ1
xð Þ≈ ∂F 0 xð Þ

∂ϕ1 xð Þ þ α
X
v∈xℕ

∂F 0 vð Þ
∂ϕ1 xð Þ ð13Þ
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≈ R xð Þ ∂F ϕ1 xð Þð Þ
∂ϕ1 xð Þ RT xð Þ

þ α
X
v∈xℕ

∂R vð Þ
∂ϕ1 xð Þ F ϕ1 vð Þð ÞRT vð Þ þ R vð ÞF ϕ1 vð Þð Þ ∂R

T vð Þ
∂ϕ1 xð Þ

 ! ð14Þ

α∈ [0.1,1] is a termwe introduced to change the relative importance
of the tensor rotation term during optimization with respect to the
matching term. At the lower levels of the optimization (early iterations
of the lower resolutions of the multi-resolution image pyramid), α is
kept small to favor the correspondence matching, but its value is grad-
ually increased in the later stages of the registration. The detailed

derivations of the terms ∂RðvÞ
∂ϕ1ðxÞ, which are based on the differentials pro-

posed by Yeo et al. (2009), can be found in Appendix A.2.

Anatomical image similarity
In addition to the two metrics that consider tensorial information,

DR-TAMAS can make use of any number of additional image pairs.
These image pairs for the fixed Fs and moving images Ms, are assumed
to reside in the exact same anatomical space as their corresponding ten-
sors. Therefore, for such image pairs, the local cross-correlationmetric is
used on the middle time point images F′s andM ′s as described in detail
by Avants et al. (2008). Given that a local cross-correlation metric is
used to coregister the two images of the image pair, they should be ac-
quired with the same image modality, although acquisition parameters
are not required to be identical. F ′s and M ′s are defined as described in
the section Transformation model. The CC metric can be defined as
follows:

ξ3 ¼ −
X
x∈Ω

CC F 0s xð Þ;M0s xð Þ
� �

ð15Þ

The derivations for the displacement vectors using this metric are
described in detail by Avants et al. (2008).

Metric fusion
DR-TAMAS allows the use of one or both of the tensor metrics in

addition to any other optional anatomical image pairs. The information
from these different modalities is combined at the metric level,
i.e., a displacement field is generated for all the image/tensor/metric
pairs and fused at each optimization iteration. This translates into
(for ϕ1):

ϕnþ1
1 xð Þ ¼ ϕn

1 xð Þ∘ wn
1 xð Þ ∂ξ1

∂ϕ1
xð Þ þwn

2 xð Þ ∂ξ2
∂ϕ1

xð Þ þ
XN
i

wn
3 xð Þ ∂ξ

i
3

∂ϕ1
xð Þ

 !

ð16Þ

where n is the optimization iteration number, N is the number of op-
tional anatomical images, ∘ is the deformation combination, w is the
weight for the corresponding displacement vector, where the sum of
all w is one. ϕ2 has its own set of weights to describe the tissue charac-
teristics of themoving image. Theoretically, the default spatially varying
weighting that DR-TAMAS provides should represent a good compro-
mise to achieve good registration across all brain regions. However,
given that different applications may require a selectively improved
performance for specific brain structures, DR-TAMAS includes the possi-
bility of selecting the following customized weighting options:

• Default: With the default option, a fractional anisotropymap is gener-
ated at every iteration of the optimizer, smoothed with a Gaussian
kernel of standard deviation equal to the image spacing and mapped
to the range [0,0.8]. This map is used as a voxelwise weight map for
w2, i.e., the deviatoric tensor similarity metric to guarantee that this
metric is favored in WM regions and the other metrics/images are
favored in GM and CSF regions. The remaining voxelwise weights
are distributed evenly among the other employed metrics.
• equal: All weights for all images and metrics are set to be equal. With
this selection, themetrics are constant throughout the images and are
not voxelwise.

• WM:w2, theweight for the deviatoric tensor similaritymetric, is set to
be significantly larger than the other weights (w2=0.8) to obtain a
better WM alignment. Other metrics are set to be equal.

• GM: Similar to theWM case, but this timew2 is set to 0.2, and the re-
maining weights are distributed evenly among the other metrics in
use.

For the default option, the spatially varying weight maps are com-
puted for both the transformed fixed and moving images on the SyN
algorithm's middle space, to capture the current tissue characteristics
of both images in each iteration. This approach is significantly different
than using a pre-defined spatially varying map on the fixed or moving
image's native space, which is typically the case when an exclusion
mask is considered. Therefore, our spatially varyingweighting formula-
tion cannot be used for such a purpose as the weight maps are comput-
ed for both images and evolve over the iterations, therefore are
intrinsically dependent on the previous deformation field updates.

Exclusion masks
Diffeomorphic registration requires that structures, possibly with

different shapes, exist in both images. This is not always the case in
medical imaging, particularly in the presence of focal abnormalities.
Therefore, registration of the patient brainwith focal lesions to a control
template may be problematic. A typical strategy is to define a mask
which excludes the lesion voxels from themetric computation, produc-
ing zero displacement for these locations (Avants et al., 2011). However,
this is not sufficient when the lesion is in a subregion of the brain that
requires large deformations. In such a case, the zero displacement
in the lesion voxels and the diffeomorphism constraints would limit
the displacements of larger neighboring regions. One other solution is
to impose a “rigidity constraint” instead. This can be achieved either
by constraining the determinant of the Jacobians within the mask
to unity (Sdika, 2008) or by performing additional filtering of the
deformation fields to enforce rigidity (Staring et al., 2007). With our
unparameterized two-deformation fields model, constraining the
Jacobians at subvoxel level is computationally expensive and infeasible.
On the other hand, the filtering approach forces the displacement fields
to a translation transform rather than a complete rigid transformwith a
rotation component. These options are not ideal in our case. An elegant
solutionwould be to perform a registration that is designed to be robust
to the presence of lesions as proposed by Stefanescu et al. (2004).
Instead, for computational speed reasons, we implemented a new algo-
rithm aimed at finding the best rotation and translation that describe
the underlying displacements from the deformation fields. The details
of this method can be found in Appendix A.3.

Atlas creation

DR-TAMAS allows the creation of population atlases for both the dif-
fusion tensor and the additional anatomical images provided by the
user. The atlas creation methodology follows the principles proposed
by Joshi et al. (2004) as all our tensor-based metrics support the ”aver-
aging property” of Eq. (6) in their work, when used individually or in
combination (see Appendix A.5 for the proof). Note that this property
does not hold for the cross-correlation metric (Avants et al., 2010)
used for the registration of additional images, if also a structural atlas
is desired by the user. In such a case, we follow the methodologies pro-
posed by Avants et al. (2010) to create a structural atlas.

DTI atlas creation differs from structural image-based atlas creation
because typically DT images are premasked to exclude nonbrain tissue
regions and sometimes CSF regions. These exclusion masks are likely
to differ among subjects, resulting in a fuzzy and poor initial template,
which might reduce the quality of the subsequent iterative templates
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as shown by Wu et al. (2011). Moreover, the log-Euclidean averaging
typically performed in tensor registration emphasizes these artifacts
produced by holes in the original images. The traditional approach to
overcome this issue is to use the voxelwisemedian instead of the arith-
metic mean. However, in our experiments, we observed that the medi-
an operator produces very sharp and noisy images, which also tend to
affect registration negatively. Therefore, we opted to use a family of
smooth functions, which imitate the median function at the earlier
stages of the atlas-creation process but which converge to the mean
function at the later stages. The details of our atlas creation methodolo-
gy can be found in Appendix A.4.

Experimental setup

The proposed tensor registrationmethodologywas tested using sev-
eral data sets and compared with other well-known tensor and scalar
image registration strategies. In this section we will describe the proce-
dures to assess the performance of DR-TAMAS.

Data sets
Three sets of diffusionMRI data were used for the experimental val-

idation and testing of DR-TAMAS. The first set (Atlas Set) was from 11
healthy volunteers scanned on a 3T MRI scanner (GE Medical Systems)
equipped with a 32-channel receive coil. Diffusion weighted images
(DWIs) were acquired with a single-shot spin-echo EPI sequence
(FOV = 256×256 mm, slice thickness = 2 mm, matrix size =
128×128, 78 slices, TR/TE=9981/90 ms). An ASSET factor of 2 was
used for parallel imaging. Each diffusion data set consisted of 4 image
volumes with =0 s/mm2, 4 volumes with b=150 s/mm2, 4 volumes
with b=300 s/mm2, 4 volumes with b=500 s/mm2 and 62 volumes
with b=1100 s/mm2. High resolution T1-weighted and T2-weighted an-
atomical images were also acquired with a fast spin-echo sequence.

The second data set (SPG11 Set) consisted of diffusion MRI data col-
lected in an unrelated study from a patient suffering from hereditary
spastic paraplegia of type 11. The most salient brain abnormality in
this disorder is severe atrophy of the corpus callosum and enlarged
ventricles. DWIs were acquired on a Philips 3T Achieva scanner
(FOV = 296×296 mm, slice thickness = 2mm, matrix size=160×
160, 80 slices, TR/TE = 11931/95.4 ms). The SENSE factor was 2. Diffu-
sion experiments consisted of 8 volumes with b=0, 15 volumes with
b=300, and 53 volumes with b=1100 s/mm2. High resolution T1W
and T2W anatomical images were also acquired.

The third data set (Ferret Set) consisted of high quality ex vivo ferret
brain data. Two ex vivo ferret brainswere scanned on a Bruker 7T vertical
bore micro-imaging system with the microWB gradient and probe sys-
tem with a 25 mm RF coil. One animal had a brain lesion produced by
controlled cortical impact. A T2-weighted structural image was acquired
using a multi-slice spin-echo sequence with: TE/TR = 30/2000 ms,
nex = 1, and the same spatial parameters described for DTI. For DTI, 94
image volumes were acquired for each specimen using a 3D echo-
planar imaging sequencewith: TE/TR=36/700ms, nex=1, segments=
8 and FOV = 40×26×20 mm with matrix size = 160×104×80 for
250 micron resolution. DWIs were acquired with diffusion timings of
δ=3 ms and Δ=20ms. The diffusion experimental design consisted of
8 shells with b=200,300,600,1100,1800,3800,6800,10000 s/mm2 with
N=18,18,18,18,32,32,56,105 volumes in each shell. Only the shells up
to b=3800 were used for tensor computations, and all the shells were
used for the HARDI model.

DWI processing
All diffusion data sets were first corrected for motion and eddy-

currents distortions using the DIFFPREP tool of the TORTOISE package
(Pierpaoli et al., 2010; Rohde et al., 2004a). Every subject's image in
the Atlas Set and also in the Ferret Set was corrected for concomitant
field and susceptibility distortions using the “blip-up blip-down” strate-
gy with DR-BUDDI (Irfanoglu et al., 2014, 2015). The images in the
SPG11 Set were corrected for these EPI distortions by elastically regis-
tering them to a distortion-free structural image (Wu et al., 2008). As
is standard processing procedure with the TORTOISE software, all indi-
vidual imaging data were realigned onto a common standard orienta-
tion with the midsagittal plane of the image separating the two
hemispheres and the intersection of the anterior and posterior commis-
sures with the sagittal plane lying on the same axial slice (midsagittal
and ACPC alignment). This provides a good initialization for tensor reg-
istration. The diffusion tensors were computed with DIFFCALC part of
TORTOISE using the nonlinear fitting option. DR-TAMAS takes as input
the tensor format produced by DIFFCALC.

Registration quality assessment
We compared the performance of DR-TAMAS to those of six well-

known tensor and scalar image–based registration methods for diffu-
sionMRI data implemented in publicly available software, using several
criteria. These reference registration methods were 1) ANTS-scalar
(Avants et al., 2008) using FA and TR images for registration, 2) ANTS-
tensor using tensor component images in a multichannel setting,
3) DTITK-dev (Zhang et al., 2006) using the default deviatoric tensor
similarity metric, 4) DTITK-full (Zhang et al., 2006) using the full tensor
similaritymetric, 5) FNIRT (Andersson et al., 2007) from the FSL package
using FA images, and 6) DT-REFinD (Yeo et al., 2009), which is the algo-
rithm included in theMEDINRIA package. All these methods along with
DR-TAMAS, were used to perform registration for the two sets of human
data. Atlas creation was performed with the algorithm provided in
the software package, when available, otherwise it was performed by
DR-TAMAS but with the metrics produced by the given method. For
the registration methods that did not produce reoriented tensor data,
the computed deformation fields were applied to the original tensor
data, including finite strain reorientation, and the transformed tensors
were averaged to generate the final DTI atlas. For each method, default
parameters were used for registration and for DR-TAMAS, only tensor
data were used for registration without any anatomical images.

For the Atlas Set, registration qualitywas evaluated by first visual in-
spection and subsequently, by quantitative assessment by computing
the following voxelwise measures in the population:

• Principal Eigenvector Orientation Dispersion (PEOD): With the assump-
tion that a perfect tensor registration algorithm would align the pri-
mary orientation, e1, to be identical for all voxels for all subjects, this
assessmentmetric aims to quantify the directional alignment and ten-
sor reorientation capabilities of the methods by examining the
voxelwise variance of e1 within the population. Regions of interest
(ROIs) for the cingulum bundle (CB), cortical-spinal tracts (CST),
genu of corpus callosum (CC) and arcuate fasciculus (AF) were
drawn on the final atlases from each method. The FA skeletons were
also computed with FSL and used as an additional ROI. As proposed
by Basser and Pajevic (2000), representing e1 as a second-order dyad-
ic tensor allows one to quantify the dispersion about the mean within
an ROI. Let the mean dyadic tensor at voxel x within the ROI R be as
follows:

ε xð Þ ¼ 1
11

X11
i¼1

e1 xð ÞeT1 xð Þ x ∈ ℝ ð17Þ

The eigenvalues β1, β2, β3 of �ε can be used to measure the voxelwise
dispersion of e1 orientations as:

PEOD xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 xð Þ þ β3 xð Þ

2β1 xð Þ

s
ð18Þ

We report the average PEOD values within each ROI as a measure of
orientation quality after registration.
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• Overlap of the eigenvalue-eigenvector pairs (OVL): OVL Basser and
Pajevic (2000) measures the similarity of the entire eigenvalue-
eigenvector pairs of tensors from two images F and M over a region
R. The formulation is:

OVL ¼ 1
Nℝ

X
x∈ℝ

X3

i¼1
λF
i xð ÞλM

i xð Þ e FT
i xð ÞeMi xð Þ

� �2
X3

i¼1
λF
i xð ÞλM

i xð Þ
ð19Þ

where NR is the number of voxels in ROI R. For OVL analysis, we used
the same four ROIs in addition to the whole brain to quantify each
method's performance. OVL computes the similarity between a pair
of images instead of the variance among a set of images. Therefore,
we computed the OVL values between each of the 11 images in our
population and reported the average of these values as our quantita-
tive measure for each method.

• FA and Trace Variance: Similarly to PEOD, the variances among the
population of voxelwise FA and trace values were also computed.
For trace variance, these measures were computed for the whole
brain and for FA variance only voxels with FA values greater than
0.2 were used. Maps were also generated to visualize spatial patterns.

• Tensor Covariance (TCov): This measure quantifies the voxelwise var-
iance of the tensors over the population, with smaller variance values
indicating better alignment and tensor reorientation. Let the
vectorization operator V be the operator that converts a tensor into
its vector version as VðDÞ ¼ ½Dxx Dyy Dzz

ffiffiffi
2

p
Dxy

ffiffiffi
2

p
Dxz

ffiffiffi
2

p
Dyz�T . Then

the6×6 tensor-covariancematrix,which is equivalent to theunderly-
ing 3×3×3×3 higher order covariance tensor (Basser and Pajevic,
2003), can be written as:

Cov xð Þ ¼ 1
11

X11
i¼1

V Di xð Þð Þ−d xð Þ
� �

V Di xð Þð Þ−d xð Þ
� �T
 �

ð20Þ

where �dðxÞ is the average vectorized tensor defined as �dðxÞ ¼
1
11∑

11
i¼1 VðDiðxÞÞ . We define the TCov metric as the trace of this

matrix as TCov(x)=Trace(Cov(x)). For each method, we generated
maps of this measure and also reported its average value over the
whole brain.

• Region Overlaps: Given that one of the goals of our work is to attain
good alignment of GM and CSF regions in addition to WM regions,
we evaluated the ability of the various methods to achieve good co-
registration of these regions in the followingway: First, we segmented
subcortical GM, cortical GM, cortical WM, CC, and CSF regions using
Freesurfer (Fischl et al., 2002) in the native space of the structural
MRI of each subject. Subsequently, for eachmethod, the displacement
fieldsmapping each subject onto their corresponding atlaseswere ap-
plied to the segmentation label maps and the Dice overlap measure
was computed on the warped label map (Dice, 1945) as:

DICE ¼ 2

X
r
Fr ∩ Mrj jX

r
Frj j þ Mrj jð Þ ð21Þ

The Dice coefficientmeasures howwell the segmentationmaps of the
two images overlap. These coefficients were computed on both indi-
vidual regions and the whole brain. Similarly to the OVL measure,
these coefficients operate on a pair of images hence, they were com-
puted between all the possible pairs in the population, and the
means of these pairwise coefficients were reported.

For the SPG11 Set, the diffusion tensor image of the patient was reg-
istered to the template generated by DR-TAMAS using the Atlas Set. Our
quality assessment strategy involved visual inspection of the Trace, the
directionally encoded color (DEC) maps (Pajevic and Pierpaoli, 1999)
and the anatomical plausibility of fiber tractography of the cingulum
bundle. The reason for choosing the cingulum bundle is as follows:
The corpus callosum in the SPG11 patient is atrophic, but the adjacent
cingulum bundle is mostly preserved and traceable in its entirety from
a single ROI seed on the native patient data. However, when the
image of the patient is warped to a healthy control template, it is impor-
tant to ensure that the large deformation of the corpus callosumwould
not in turn disrupt the continuity of the cingulum bundle which is in
close proximity to the corpus callosum. Therefore, we reasoned that
the cingulum bundle's tractography was a suitable test for the large-
deformation modeling and tensor reorientation capabilities of the pro-
posed and referencemethods. An ROI of 6 voxels was drawn to the cen-
ter of the cingulum bundle in the left hemisphere on the coronal plane
of the target template image, and this same ROI was used as a seed re-
gion for tractography on the registered images from each method. The
SPG11 Set was also used to demonstrate the effects of different metric
weighting options provided by DR-TAMAS. The same registration was
performed with different weight options and the results were visually
examined.

In addition to its use with DTI data of the human brain, one can be
interested in using DR-TAMAS for the registration of high angular reso-
lution diffusion imaging (HARDI) data, for ex vivo diffusion tensor imag-
ing in animal models, or for registering brains with lesions of relatively
large size that may not have corresponding features in the target tem-
plate. To test how DR-TAMAS would perform on these tasks, we used
the ferret data set. In this data set, the region affected by the controlled
cortical impact did not have a corresponding region in the healthy
brain; therefore, an exclusion mask on the impact region was created,
and the registration was performed twice, once with and once without
this exclusion mask. The resulting TR maps were visually examined. To
assess the usability of DR-TAMAS on HARDI data, the MAP-MRI model
(Özarslan et al., 2013) that computes features of the diffusion propaga-
tor was used for both the healthy and injured ferret brains. The defor-
mation fields obtained from the registration using the mask was
applied to the entire DWI set (297 volumes) of the injured brain and
theq-vectorswere rotated voxelwise based on these deformationfields.
These voxelwise q-vectors were used to compute the diffusion tensors
andMAP-MRI parameters. The glyphs representing orientation distribu-
tion functions (ODFs) derived from theMAP-MRI parameterswere visu-
ally examined.

Results

Atlas set results

DEC maps for two slices from atlases built by each method can be
found in Fig. 1 (a). At visual inspection the DEC maps of the various
methods appear very similar; however, subtle differences are evident,
especially at the brain stem level. DEC maps represent anisotropy and
orientation, and all the methods considering some form of anisotropy
information (DR-TAMAS, ANTS-scalar, DTITK-dev, FSL) produced similar
results; however, two of themethods employing full tensorial informa-
tion,DTITK-full (red arrow) andDT-REFinD (white arrow) showed some
abnormalities. At this level,DT-REFinD failed to align structures resulting
in a blurry image. Additionally,DTITK-fullwas not able to register one of
the subjects to the atlas, hence the averaging operation created a ghost-
like silhouette outside the brain region (yellow arrow). At the second
slice level, the WM of the gyrus rectus and of the medial orbital gyrus
are nicely separated with DR-TAMAS (purple arrow), whereas they are
slightly blended or merged with the other methods. Additionally, the
two methods that only use anisotropy information, DTITK-dev and FSL,
produced slightly larger inferior-frontal temporal lobe gray matter re-
gions compared to the methods also using either trace or full tensor
information.

Trace maps for the same data sets are displayed in Fig. 1 (b). The
trace maps at the brain stem level (top row) reveal that DR-TAMAS,



Fig. 1. DEC maps (a) and Trace maps (b) of the average brains created by each method at two slice levels. The images are rigidly aligned for visualization.
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and both ANTS methods performed very well both in the WM region
and the surrounding CSF. The two methods employing solely anisotro-
py, DTITK-dev and FSL, produced very blurry CSF regions outside of the
WM (yellow arrows). On the other hand, DTITK-full yielded a sharp
WM/CSF interface; however, theWMwithin the brain stemwas artifac-
tual (blue arrow). DTITK-dev, DTITK-full and FSL suffered from mis-
matches at the superior cortical level (bottom row), which again
caused ghost-like artifacts in the trace maps (red arrows).

PEOD measures, which quantify the variances of tensor primary ei-
genvectors, can be found in Table 1. With this measure, DR-TAMAS
and DTITK-dev are the best performing methods with similar perfor-
mances in all the WM ROIs tested. In WM, the similarity metric used
by these two methods is identical and the only differences are the un-
derlying transformationmodels and the constraints imposedby the sur-
rounding GM and CSF regions. As expected, methods that consider
tensor reorientation in their optimization performed well. The ANTS-
tensor outperformed the ANTS-scalarmethod that uses only FA and TR
but probably because of the lack of tensor reorientation, trailed behind
DTITK-dev and DR-TAMAS.

Table 2 displays the values for OVL. These results are essentially
identical to those found for PEOD, with DR-TAMAS performing the best
in CB and CC and DTITK-dev performing the best in CST and AF. ANTS-
tensor again performs better than ANTS-scalar with FSL and DT-REFinD
trailing behind.
Table 1
Principal Eigenvector Orientation Dispersion (PEOD) measures. Lower is better.

ROIs DR-TAMAS ANTS-scalar ANTS-tensor DTITK

CB 0.086 0.135 0.130 0.088
CST 0.147 0.168 0.156 0.118
CC 0.059 0.147 0.136 0.060
AF 0.118 0.176 0.177 0.099
Skeleton 0.209 0.279 0.262 0.200
Table 3 reports the average of voxelwise variance values for FA, TR,
and tensors computed across the brain of all subjects for each registra-
tion method. Methods that use anisotropy information directly, ANTS-
scalar, DTITK-dev, and FSL, produced the lowest FA variances. However,
DTITK-dev and FSL achieved this at the cost of very large variance values
for the trace. DR-TAMAS showed a very balanced behavior, producing
close to optimal results for both metrics. Moreover, DR-TAMAS was the
best performingmethod for the tensor variancemetric,whichmeasures
overall agreement of the diffusion displacement profiles including size,
shape, and orientation.

Themaps of FA, TR, and tensor variances displayed in Fig. 2 provide a
more detailed understanding of the origin of the differences reported in
Table 3. An examination of the trace variance maps reveals that
methods that use only anisotropy information, such as DTITK-dev and
FSL show poor performance at the GM/CSF boundaries. This is particu-
larly evident at the level of the head of the caudate nucleus. TCOV
maps confirm at the GM/CSF boundaries the suboptimal behavior of
methods that rely exclusively on anisotropy information. Moreover, in
WM structures such as the splenium of the CC, TCOV is relatively high
in spite of low FA variance for the ANTSmethods and FSL. Interestingly,
these methods are the ones that do not include tensor reorientation in
their implementation.

The DICE metrics can be found in Table 4. Results indicate that DR-
TAMAS performed very well, being the best method in the subcortical
-dev DTITK-full FSL DT-REFinD Best method

0.167 0.155 0.163 DR-TAMAS
0.182 0.194 0.408 DTITK-dev
0.078 0.151 0.075 DR-TAMAS
0.148 0.160 0.150 DTITK-dev
0.263 0.262 0.321 DTITK-dev

Image of Fig. 1


Table 2
Overlap of eigenvalue-eigenvector pair (OVL) measures. Higher is better.

ROIs DR-TAMAS ANTS-scalar ANTS-tensor DTITK-dev DTITK-full FSL DT-REFinD Best method

CB 0.928 0.885 0.889 0.926 0.908 0.852 0.829 DR-TAMAS
CST 0.887 0.866 0.878 0.919 0.850 0.837 0.729 DTITK-dev
CC 0.975 0.903 0.917 0.972 0.962 0.898 0.962 DR-TAMAS
AF 0.930 0.870 0.871 0.952 0.898 0.891 0.899 DTITK-dev

Table 3
Average FA,TR, and tensor variance measures. Lower is better.

Var type DR-TAMAS ANTS-scalar ANTS-tensor DTITK-dev DTITK-full FSL DT-REFinD Best method

TRvar 503,917 481,391 484,210 715,416 559,097 905,980 867,658 ANTS-scalar
FAvar 0.0079 0.0072 0.0090 0.0069 0.0120 0.0077 0.0176 DTITK-dev
TCOV 202,146 209,050 206,999 261,177 229,694 347,748 337,949 DR-TAMAS

Table 4
DICE overlap measures. Higher is better.

ROIs DR-TAMAS ANTS-scalar ANTS-tensor DTITK-dev DTITK-full FSL DT-REFinD Best Method

Subcort GM 0.821 0.797 0.794 0.794 0.777 0.789 0.738 DR-TAMAS
Cortical GM 0.615 0.598 0.566 0.557 0.525 0.549 0.499 DR-TAMAS
WM 0.781 0.775 0.756 0.755 0.716 0.775 0.639 DR-TAMAS
Center CC 0.705 0.736 0.687 0.691 0.674 0.713 0.652 ANTS-scalar
CSF 0.839 0.808 0.809 0.800 0.812 0.800 0.731 DR-TAMAS
Whole brain 0.856 0.862 0.850 0.833 0.850 0.851 0.817 ANTS-scalar
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and cortical GM, WM, and CSF. ANTS-scalar achieved the best perfor-
mance in the CC and the whole-brain.

SPG11 set results

The DEC and TR maps of the brain of the SPG11 subject and the tar-
get average brain template are shown in Fig. 3 (a). In the patient data,
the corpus callosum, especially the body and genu, is severely atrophic,
and the ventricle volume size is considerably increased compared with
the average brain. The DEC and TRmaps from the registration results of
Fig. 2. Variances of FA, TR and tensors comp
each method can be found in Fig. 3. It can be noted that the DTITK-dev
registration of the genu appears the closest to that of the target tem-
plate. However, the TR map reveals that the registration of the GM
and CSF regions adjacent to CC was unsatisfactory. The anterior horns
of the lateral ventricles, for example, were still much larger in the regis-
tered patient data than in the template and their shapes did not match.
DTITK-full shows smaller ventricles, but the anatomy of the entire fron-
tal lobe appears incorrect. FSL produced reasonable results in the CC, but
the ventricleswere still too large. The ANTSmethods performed similar-
lywith high quality alignment of the ventricles, but poorer performance
uted in the population for each method.

Image of Fig. 2


Fig. 3. a)DEC and TRmaps of the SPG11data and the target template image. The images are affinely aligned for visualization. Thewhite arrowon the sagittal image indicates the level of the
axial slices. b) Registration results of the SPG11 data to the template brain for each method.
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in the CC. DR-TAMAS was able to achieve a good alignment in both the
DEC and TR maps. Even though the genu of the CC in the DEC map
was not as completely aligned to the atlas as with DTITK-dev, it was
still anatomically plausible in terms of both shape and orientation, and
the alignment of the surrounding GM and CSF regions was excellent.

Fig. 4 shows tractography results from a single seed ROI in the cingu-
lum bundle on the target population atlas data, the SPG11 patient data
in the native space, and the warped patient data for all methods. In
the native space patient data, the cingulum was traced for its entire an-
terior–posterior trajectory. However, in the warped data from most
methods, portions of the cingulum bundle remote from the seed could
not be traced. This was particularly evident for methods such as FSL
and DTITK-dev that produced a good registration of the genu of the cor-
pus callosum. It seems that the deformations required to achieve such
high performance in the CC lead to a disruption in the continuity of
the cingulum bundle for these methods. DTITK-dev also generated spu-
rious tracks. DR-TAMAS was able to correctly reconstruct this bundle in
its entirety, including its most anterior and posterior curving parts. DT-
REFinD also produced good tractography results, capturing most of the
bundle. Another observation is that ANTS-tensor produced significantly
better results than ANTS-scalar.

Fig. 5 displays the results of performing DR-TAMAS registration with
differentmetric weight configurations. In addition to the fourweighting
settings described in the section Metric fusion, results from using only
the deviatoric metric (third column) and the trace metric (fourth col-
umn) are also included. Similar to the case with other techniques, the
weight configurations emphasizing white matter favoring metrics
(deviatoric and WM) produced larger than normal ventricles in the
tracemaps. The overall brain sizewas smallerwith the deviatoricmetric
as well (red contours). On the other hand, the configurations that favor
the trace information (Trace and GM) produced incorrect alignment of
the genu of the corpus callosum. These two options produced very
sharp tissue interfaces on the TR maps as expected. The GM configura-
tion, which also includes the deviatoric similarity metric with a small
weight factor of 0.2, was able to produce more white matter tissue in
the genu of CC compared to using only the Trace based metric. The
more interesting comparisons are among the voxelwise FA, equal and
deviatoric metric only configurations. As with DTITK-dev, the genu of
the CC was nicely aligned with the target on the DEC maps with the
deviatoric metric only but the TR maps showed artifacts. The voxelwise
FA option produced a genu that is very similar to the deviatoric case but
with no artifacts on the TR maps. The equal weighting between the
deviatoric and the TR metrics yielded again a TR map without artifacts,
slightly sharper than the voxelwise case, however the shape of the genu
was not as nicely aligned compared to the default voxelwise option.

Ferret set results

The TR maps of the native space healthy brain and the traumatic
brain injury lesion brain from the Ferret Set are displayed in Fig. 6 (a),
with an area of missing tissue in the core of the lesion delineated by
red contours. Fig. 6 (b) displays the results of DR-TAMAS registration
with and without an exclusion mask. Results of registration using the
mask have shown that the mask regions are very similar to the original
imagewith veryminor differences due to the in-plane component of the
rotation matrix of the enforced rigid transformation. However, in the
processed data without a mask, the high trace portion of the lesion is
stretched to reach the brain contour of the healthy brain. Fig. 7 shows
MAP-MRI data from the brain hemisphere contralateral to the lesion
to analyze the effects of the registration using the HARDI type of data.
The top row shows FA maps, and the bottom row displays the glyphs
of the ODFs generated from the MAP-MRI model for the native space

Image of Fig. 3


Fig. 4. Fiber tractography of the cingulumbundle using the target atlas data, the SPG11patient data at thenative space, and the resulting data from registration of SPG11 to the atlas by each
method. The seed ROI locations on the coronal plane are indicated by white arrows.
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target and source data and after application of the deformation fields
from DR-TAMAS to the DWIs of the source data. Differences between
the two native space images are evident. After registration the regions
were aligned, but the glyphs of both WM and GM voxels were also
very similar in terms of their shape and orientation.

Discussion

Ourmain objective in developing a novel image registrationmethod
for diffusion tensor images (DTI) was to attain high quality alignment of
white matter WM structures without compromising the alignment of
gray matter and cerebro-spinal fluid filled regions. Unlike previously
proposedmethods,DR-TAMAS uses a spatially varying similarity metric,
Fig. 5. Results of registering the SPG11 patient data to the template withDR-TAMAS using differe
The red contour was drawn on the TR image of the template data and copied onto the TR imag
which is designed to favor orientation and anisotropy information in
WM and to favor trace and structural MRI information in regions with
isotropic diffusion properties.

We compared the performance of DR-TAMAS to that of other
available diffusion MRI-based registration methods using different
data sets. The accuracy of alignment of various brain structures was de-
termined by using a combination of several metrics that included
voxelwise variance of anisotropy, trace, and orientation maps, as well
as degree of overlap of segmentedWM, GM and CSF compartments ob-
tained from structural MRIs. Not surprisingly, all registration methods
showed good performances when alignment was tested on metrics
that where used in their registration cost function. For example, FSL, a
method that uses only FA in its similarity metric, performed well
ntmetricweight configurations. The target template is displayed in the rightmost column.
es of different registration results.

Image of Fig. 4
Image of Fig. 5


Fig. 6. Trace maps of healthy and injured ferret brains in the native space with the region
to be excluded from the registration outlined in red.
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when alignment was assessed using FAmaps; however, it showed poor
performance when alignment was assessed using metrics of orienta-
tional coherence of eigenvectors or variance of trace. Also, the best cor-
respondence based on the variance-of-tracemetric was achieved by the
two methods that explicitly used trace information in their cost func-
tion: DR-TAMAS and ANTS-scalar. Thus one would have expected
methods that use full tensor information, eigenvector information, and
tensor reorientation during the registration to perform well when
Fig. 7. Effect of application of tensor registration based deformation fields from DR-TAMAS to
rectangles. Images in the bottom row display the ODF glyphs computed in these regions.
registration output displayed in (b). The glyphs representing the complex diffusion process
registered source image and the target image.
tested with metrics such as principal eigenvector dispersion and tensor
covariance measures. This was generally true; however, large differ-
ences in performance could be found among methods.

If one considers all brain regions and assessmentmetrics, DR-TAMAS
showed a very good overall performance; therefore it should be consid-
ered as the method of choice if one is interested in overall registration
accuracy across the brain. For this reason, DR-TAMAS would also be an
ideal method to create population brain atlases that faithfully represent
the average anatomy for the population in all brain regions. The
question arises as towhatwould be themethod of choice if onewere in-
terested in registering only WM structures, for example, when the goal
is to perform tractography. For instance, although DTITK-dev did not
perform well in registering GM and CSF regions, it showed excellent
performance in WM (see Tables 1 and 2). In this regard interesting ob-
servations can bemade from the data of the hereditary spastic paraple-
gia type SPG11 patient. With the SPG11 data, DTITK-dev was able to
warp the thin corpus callosum of the patient to match the corpus
callosum of the target brain atlas of healthy subjects with very high
morphological quality and high FA values, therefore assuring good
traceability. However the excellent alignment of the CC was obtained
at the expenses of a poor alignment of adjacent structures that had
low anisotropy, such as the CSF spaces and the cingulate cortex, which
in turn affected the continuity of the cingulum bundle, as can be seen
in Fig. 4. This leads us to conclude that although the registration of
WM structures is in theory optimal with methods that give preference
to anisotropy, and this is true for some WM regions, other WM struc-
tures are negatively affected by the poor registration of adjacent GM
or CSF structures. For this reason, we would suggest using balanced
methods, such as DR-TAMAS, even if the goal is the alignment of WM
for tractography purposes.

Another important issue that the registration in the genu of the cor-
pus callosum in the SPG11 data helps us analyze is defining the goal that
a tensor-based registration algorithm should achieve. As Fig. 3 indicates,
DTITK-dev and FSL generated a very good visual alignment in this region
with both morphological similarity to the target template region and
high anisotropy values. However, in the original native space patient
data, this region was severely atrophic and had relatively low anisotro-
py at the level displayed in the axial slice shown in Fig. 3 (a). Therefore,
HARDI models. Top row images display the FA maps with the ROIs indicated by white
The native space source image in (c) is registered to the target image in (a) with the
in the gray matter regions are directionally and shape-wise very similar between the

Image of Fig. 6
Image of Fig. 7


450 M.O. Irfanoglu et al. / NeuroImage 132 (2016) 439–454
the high anisotropy in the registration results of these two methods
originated from pulling up voxels with high anisotropy, which were lo-
cated several slices more caudally in the native data. This high anisotro-
py region is clearly visible on the sagittal DECmap displayed in Fig. 3 (a).
Fromamathematical standpoint, the one-to-onemapping required by a
diffeomorphism between the target template and the native patient
data existed, and the registration algorithm pulled up these locations
that were not spatially in correspondence to minimize its cost function.
Such a mapping of noncorresponding regions could have negative im-
plications on voxel-based morphometry analysis if used with tensor-
derived quantities such as FA. With this type of analysis, mapping the
genu of CC to a high anisotropy region would lead to a reduced statisti-
cal difference between the control and the patient data, which is obvi-
ously undesirable. In the extreme case of completely absent regions in
one of the images, such as the data presented in the Ferret Set in this
study, a one-to-onemapping does not exist, hence the solution requires
exclusion of noncorresponding regionswith amask. However, this solu-
tion is not suitable for the SPG11 data because the CC does exist, and ex-
cluding the CC from registration would also affect the surrounding
regions. Therefore, we believe “the ideal” tensor-based registration
method should be capable of aligning images with a good morphologi-
cal correspondence while preserving the diffusion characteristics of the
tissue in its native images. In this respect, in the genu of the CC on the
SPG11 data set, DR-TAMAS appeared to have reached good morpholog-
ical similarity to the templatewhile preserving the relatively low anisot-
ropy of the original data.

An additional aspect that is worth discussing is the smoothing of the
deformation fields. DR-TAMAS' strategy for field smoothing is borrowed
from the ITK library and is identical to that used by the ANTS algorithm.
DR-TAMAS smooths the displacement vector update fields and the com-
bined field (Eq. (16)) with two separate isotropic Gaussian kernels,
where the kernel sizes are user-defined parameters. The choice of
these smoothing parameters can significantly affect the quality of the
final registration,wherewith data such as the SPG11 Set, small smooth-
ing factors can lead to negative Jacobian determinants. Negative Jacobi-
an determinants are inconsistent with diffeomorphism and would
indicate that a structure has been torn apart by the registration, which
is clearly undesirable. However, with well-behaved images, excessive
smoothingwill blur tissue interfaces, which is also undesirable. Current-
ly, the user needs to experimentwith these parameters based on thena-
ture of the data. A strategy to help with this issue is to inherently apply
an anisotropic smoothing kernel based on partial differential equations,
where the structure tensor required by these methods is computed
from the diffusion tensor images themselves and applied to the defor-
mation fields. We are planning to investigate this approach in future
research.

In addition to thedeformationfield smoothingGaussian kernel sizes,
another user-defined parameter that might affect the registration qual-
ity is the α term from Eq. (14). In our early experiments, we observed
with some data that the norm of the rotation term differential was sig-
nificantly larger than the norm of the matching term differential. We
hypothesized that this could be problematic for registrations that re-
quire large deformation mapping, where finite strain rotation and its
differential are known to be problematic. The parameter alpha was in-
troduced to be essentially a tweak tomake the registrationmore robust
if such large deformation mapping is required between the fixed and
moving images. The use of this term results in a gradient direction
that is the convex combination of the gradient direction obtained
when tensor reorientation is considered in the optimization and the
gradient direction when it is not. Therefore, the gradient direction ob-
tained with this term does not originate from any theoretical formula-
tion, however, in our experiments (data not shown), we achieved
empirically robust results in terms of both tensor reorientation and
large deformation mapping when this parameter was employed.

In this study, we showed an example of the use of DR-TAMAS with
the HARDI type of data in the form of MAP-MRI. Application of a
tensor-based registration to HARDI data was expected to be accurate
in the WM, but we observed improvements even in GM regions. The
ODFs in the GM regions surrounding the fiber bundles have similar di-
rectionality and shape in the registered source image and the target
image. The improvements in these regions can be attributed to the ob-
served anisotropy in ex-vivo tissue and the diffeomorphic movements
of the surrounding regions, where DR-TAMAS has enough information
to operate with. To further improve the alignment of such regions, one
can start with an initial tensor-based registration with DR-TAMAS, and
subsequently, further fine-tune the registration with similarity metrics
specialized for MAP-MRI or the HARDI model in consideration.

One weakness of this study is that all the tested reference methods
and DR-TAMAS were used with their default settings to perform regis-
tration on all data sets. It is likely that for each method, better perfor-
mances may be achieved by fine-tuning the registration parameters.
Therefore, the results presented in this study should not be perceived
as “the best achievable performance” of a particular method but rather
as representative of what can be achieved by a typical user. It would
also be interesting to analyze the best possible performances in a future
study or a conference workshop challenge, with the help and contribu-
tion from the authors of each method to clarify their strengths and
weaknesses.
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Appendix A

A.1. Time-varying velocity field gradients

Let v1(x, t) be the tangential velocity field of ϕ1 that forward maps
the fixed image to themoving image such thatϕ1(x)= ∫01 v1(x, t)dt com-
puted using the spatial gradients ∂F 0

∂x of the fixed image as in Eq. (2) and
v2(x, t) be the velocity field of the forward field ϕ2(x) generated using
the moving-image gradients. In typical TVVF formulations, as in the
ITK implementation, only v1(x, t) is computed using the fixed-image
gradients. In the tensor registration case, due to the undesired holes in
the images, in which there is no spatial gradient information, it is
more robust to employ both sets of spatial gradients as follows:

v x; tð Þ ¼ 1
2

v1 x; tð Þ−v2 x; tð Þð Þ ðA:1Þ

where the velocity field at time point t is computed using images
warped to that point as follows:

∂ξ
∂v1 x; Tð Þ ¼

∂S

∂F
Z T

0
v x; Tð Þdt

� ∂F
Z T

0
v x; Tð Þdt

� 
∂x

Z T

0
v x; Tð Þdt

����
���� ðA:2Þ
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where || . || signifies the determinant of the spatial Jacobian of the dis-
placement field up to time point t.

A.2. Deviatoric metric differentials

In their work, Yeo et al. (2009) showed that under finite strain for-
mulation, the differential of a rotationmatrixRwith respect to a compo-
nent of the Jacobian matrix J can be described as:

dR
dJij

¼ −R RT Tr ATA
� �1=2

� 
I− ATA
� �1=2

� −1

R
X3
ii¼1

RT
� �

ii
� KT
� �

ii

" #⊡

ðA:3Þ

where Tr is the trace operator, I is the identity matrix, A is the affine
matrix as A= J+ I, (.)ii is the iith column of a matrix, and K is a matrix
for which the ijth coefficient is one and the rest is zero. The operator ⊡
takes in a vector m=[m1,m2,m3]T and converts it to a skew-
symmetric matrix as follows:

m⊡ ¼
0 −m3 m2
m3 0 −m1
−m2 m1 0

2
4

3
5

Let x be the voxel of interest, where the displacement vectors
need to be computed. Let v be a voxel in the neighborhood of x
as: v ∈ xN : ffx��;x�;xþ; xþþg; fy��; y�; yþ; yþþg; fz��; z�; zþ; zþþgg
and the weights for the spatial gradient kernel: w=[1/12, -8/12,
8/12,−1/12]. Given a deformation field ϕ with 3 components,
ϕx, ϕy, ϕz, the Jacobian matrix J(x) computed with the Jacobian op-
erator J ðϕðvÞÞ can be written as follows (with l ∈ {- -, - , + ,++}):

J xð Þ ¼ J ϕ vð Þð Þ ¼

X
l
w lð Þϕx xl

� �
Δx

X
l
w lð Þϕx yl

� �
Δy

X
l
w lð Þϕx zl

� �
ΔzX

l
w lð Þϕy xl

� �
Δx

X
l
w lð Þϕy yl

� �
Δy

X
l
w lð Þϕy zl

� �
ΔzX

l
w lð Þϕz xl

� �
Δx

X
l
w lð Þϕz yl

� �
Δy

X
l
w lð Þϕz zl

� �
Δz

2
66666666664

3
77777777775

ðA:4Þ

As Eq. (14) states, the term ∂RðvÞ
∂ϕðxÞ is needed to compute displacement

differentials. By chain-rule this term can be written as follows:

∂R vð Þ
∂ϕ xð Þ ¼

X
m∈ x;y;zf g

X
ij

∂R vð Þ
∂ Jij vð Þ

∂ Jij vð Þ
∂ϕm xð Þ

∂ϕm xð Þ
∂ϕ xð Þ ðA:5Þ

The first term in this equation is defined in Eq. (A.3). Please note that
this term is computed in the neighboring voxel location. The second
term can be computed from Eq. (A.4). However, in Eq. (A.4), the
Jacobian is computed at voxel x using neighboring voxels v, whereas
in Eq. (A.5), the required term is computed at voxel v using the voxel
x. This can be accomplished with a simple sign change as if the voxel v
is at the ++ location relative to x; then x is at the – location relative
to v. The third term is simply the component of the Jacobian matrix
computed at x. For example, for the x component of the deformation

field, and the neighboring voxel v being x++, i.e., ∂Rðx
þþÞ

∂ϕxðxÞ , this equation

becomes:

∂R xþþð Þ
∂ϕx xð Þ ¼ −

1
12△x

X
m

∂R xþþð Þ
∂ Jm1 xþþð Þ Jm1 xð Þ ðA:6Þ
and for ∂Rðy�Þ
∂ϕzðxÞ:

∂R y−ð Þ
∂ϕz xð Þ ¼ 8

12△y

X
m

∂R y−ð Þ
∂ Jm2 y−ð Þ Jm3 xð Þ ðA:7Þ

A.3. Rigidity for exclusion masks

The simple heuristic idea behind our masking method is determin-
ing the best rotationmatrix and translation vector describing the under-
lying displacements. Let M be an exclusion mask defined on the
moving-image space and MD is the morphologically dilated M with a
square structural element of size d, a parameter to DR-TAMAS. Let ME

be the set difference as ME ¼ MD \M . Let the weight function be
w(x)=0.2 if x ∈M and x ∉MD and w(x)=1 if x ∈ME . The weights
were chosen this way to have the regions surrounding the exclusion
mask havemore of an effect on the rigid transformation than the voxels
inside. The best rotation matrix R and translation vector t then can be
computed by minimizing the error function as follows:

ξM ¼
X
x∈MD

ϕ2 xð Þ−Rx−t þ xð Þ2 ðA:8Þ

with the rotation matrix R constructed using Euler angles α, β, γ, this
equation can be simply solved with a gradient descent algorithm with
gradients as follows:

∂ξM

∂t
¼ −2

X
x∈MD

ϕ2 xð Þ−Rx−t þ xð Þ ðA:9Þ

∂ξM

∂α
¼ −2

X
x∈MD

ϕ2 xð Þ−Rx−t þ xð ÞT ∂R
∂α

x ðA:10Þ

The gradients for β and γ can be similarly computed, and the
differential for ∂R

∂α is straightforward. After the optimum translation
vector tf and rotation matrix Rf are computed, the new displacement
vectors can be computed in a straightforward way, and the new
final deformation field ϕ2

f can be computed by applying Gaussian
smoothing along the interface of the exclusion mask to guarantee
diffeomorphism.

This process guarantees that the exclusion mask defined on the
moving image will move rigidly to the middle time point image.
However, the other part towards the fixed image needs to be
constrained as well. Let M0 be the transformed exclusion mask to
the middle image with M0ðxÞ ¼ Mðϕ2ðxÞÞ . Then the procedure
described above needs to be repeated for ϕ1

-1 and M0 , and the final
ϕ1 can be computed by determining the inverse of the deformation
field ϕ1

-1f
.

A.4. Iterative template averaging functions

DR-TAMASuses 6 iterations of atlas creation, Let itdenote the current
iteration, and letA0 be the initial template before registration,A6 be the
final template, andAit the current template. Let Tri(x) be the trace of the
subject i in the population at voxel x. The median trace for that voxel is
denoted med(x)=median(Tri(x)) for all i. Let the deviation of the trace
for each subject be di(x)=|Tri(x)-med(x)|. We use a function of these



Fig. 8.Weighting functions of the subjectswith respect to the current iteration for template averaging (It). di(x) is the voxelwise deviation of the trace of an image from themedian trace at
that voxel.

452 M.O. Irfanoglu et al. / NeuroImage 132 (2016) 439–454
di(x) and it to determine the weighting contribution wi(x) of each sub-
ject to the template as follows:

wi xð Þ ¼ −
di xð Þ

maxi di xð Þ
� �þ 1

0
@

1
A6−2it

if it b 3

wi xð Þ ¼ di xð Þ
maxi di xð Þ

� �
0
@

1
A

max 2it−6;1ð Þ

if it ≥ 3

This family of functions is plotted in Fig. 8.
As the plots indicate for the early iterations (yellow, blue curves),

only the subjects close to the median in terms of their trace values,
i.e., low di(x) have larger weights and as the template creation process
progresses, the weighting function becomes almost independent of
di(x) andweighs all subjects almost equally, converging to an arithmetic
mean operator.

A.5. Proof of tensor averaging for atlas creation

In their work, Joshi et al. (2004) showed that one can compute the
diffeomorphic atlas by iterative registration followed by averaging.
The averaging property (Equation 6 in their work) held true only if
the similarity metric used for the registration produced such an opti-
mal equation, which was the case for their L2-norm difference metric.
Because we use the same averaging operator in our atlas creation
routines, we have to show that the metrics we proposed in this
work also follow the same “averaging equation” for completeness.
Let us denote the ith transformed tensor image at iteration n as
Ii(ϕi

n)= Ii for simplicity and Ii
jk as the jkth component of this tensor
image. Then the average tensor image �I can be found using the com-
bined tensor-derived metrics as:

I ¼ argmin ξ ¼ w1

XN
i

I11i þ I22i þ I33i −I
11
−I

22
−I

33
� �2

þ 2w2

XN
i

I12i −I
12

� �2
þ I13i −I

13
� �2

þ I23i −I
23

� �2� 

þw2

3

XN
i

2I11i −I22i −I33i −2I
11
i þ I22i þ I33i

� �� 2

þ −I11i þ 2I22i −I33i þ I
11
−2I

22 þ I
33

� �2
þ −I11i −I22i þ 2I33i þ I

11 þ I
22
−2I

33
� �2�

In this representation, the first summation term originates from the
Trace similarity, the second summation term originates from the off-
diagonal component similarity when using the deviatoric distancemet-
ric, and the third and last term (third and fourth lines) originates from
the diagonal components when again using the deviatoric metric.

When we take the derivative w.r.t. �I12 to find this average off-diagonal
component, the first and third summation terms do not contribute as
they consist of only the diagonal terms. Therefore, equating the deriva-
tive to zero yields the formulation:

∂ξ

∂I
12 ¼ −4w2

XN
i

I12i −I
12

� �
¼ 0 ⇒ I

12 ¼ 1
N

XN
i

I12i

The other off-diagonal components can similarly be shown to be the
average of the corresponding components in the tensor image set.
Therefore, off-diagonal components follow the description of Joshi
et al. (2004).

Image of Fig. 8
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Deriving the formulations for the diagonal components is a little bit
more involved because the first and the third terms contribute to the
derivatives. Performing the differentiation, equating the system to
zero and rearranging the termswith straightforward algebraic manipu-
lations lead to the following linear system of equations:

w1 þ 2w2 w1−w2 w1−w2
w1−w2 w1 þ 2w2 w1−w2
w1−w2 w1−w2 w1 þ 2w2

2
4

3
5 I

11

I
22

I
33

2
4

3
5

¼

w1 þ 2w2

N
∑N

i I
11
i þ w1−w2

N
∑N

i I
22
i þ w1−w2

N
∑N

i I
33
i

w1−w2

N
∑N

i I
11
i þ w1 þ 2w2

N
∑N

i I
22
i þ w1−w2

N
∑N

i I
33
i

w1−w2

N
∑N

i I
22
i þ w1−w2

N
∑N

i I
22
i þ w1 þ 2w2

N
∑N

i I
33
i

#2
666664

When this system of equations is solved either for the extreme cases
where either only the trace or the deviatoric metric is used (i.e. w1=0

or w2=0), or for its general case, it can be shown that �I jj ¼ ∑N
i I jji is

satisfied. Therefore, for both the diagonal and off-diagonal components,
the averaging property holds when both our proposed metrics used
alone or in combination.

When additional anatomical images are also used for registration,

the term w3∑
N
i ðCCðSi; �SÞÞ is added to the above metric formulation.

Because this term does not include any tensor components, it does not
affect the above equations for tensor atlas creation. To create an ana-
tomical atlas, however, the formulations defined in (Avants et al.,
2010) need to be used due to the cross-correlation metric.
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